Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 385: 121579, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31786027

RESUMO

A mixture of SO2 and air was continuously injected in a fixed bed reactor containing a CuO/SBA-15 sorbent material and submitted to an isothermal temperature between 325 and 400 °C. The SO2 emissions were measured at the exit of the reactor. Different isothermal temperatures, different injected SO2 concentrations and different sorbent masses, all representative of industrial conditions, were tested. The purpose of the paper was to propose efficient global models which simulate the breakthrough curves whatever the experimental conditions. A simplified model was first considered assuming that the oxidation and trapping processes can occur on each copper site. The values of the four kinetic parameters which are involved were determined solving this model using Scilab software and an optimization routine. Because this model failed to reproduce in a satisfying way the breakthrough curves for different sorbent masses, a second model was introduced which involves surface and bulk trapping sites and six kinetic parameters. The breakthrough curves simulated with this second model following the same resolution techniques were in better agreement with the experimental ones, whatever the experimental conditions. For comparison, a simulation of the breakthrough curves returned by a model with bulk diffusion was presented.

2.
J Colloid Interface Sci ; 534: 637-648, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30268080

RESUMO

The deposition of oxygen-defective ZnO films exhibiting varied nanostructures via Solution Precursor Plasma Spray (SPPS) route, a one-step, minute-scaled duration and large scale method, is reported. The in situ formation of oxygen vacancies in ZnO films was confirmed by UV-Visible, Raman and photoluminescence (PL) spectroscopy and the as-prepared samples exhibit a bandgap as low as 3.02 eV. Density functional theory (DFT) simulation demonstrates that the polarization of ZnO is enhanced by the created oxygen vacancies, leading to substantially improved photocatalytic activity. The comparative experiments also revealed that forming and preserving appropriate ZnO precursor clusters inside the plasma plume is requisite for obtaining propitious ZnO nanostructures, which was followed by the in situ transfer and growth of the clusters on the preheated substrate. The ZnO-NRs films fully degrade the aqueous Orange II dye solutions within 120 min and maintain a quasi-intact activity (95.8% retention) after five test runs, which highlight their good stability. The oxygen vacancies and the narrowing of the bandgap also enable a visible light-driven photodegradation activity with conversions as high as 54.1%. In summary, this work not only reveals that the photocatalytic activity of SPPS-deposited ZnO films benefit from oxygen vacancies and well nanostructures, but also suggests that the SPPS route is of high potential for preparing metal oxides films destined to functional applications.

3.
Nanotechnology ; 30(4): 045707, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30479317

RESUMO

Binary spinel-type metal oxides (AB2O4) related materials, including ferrites (AFe2O4), are attractive photocatalysts thanks to their excellent visible light response for the photodegradation of organic pollutants. Currently, these materials are synthesized via conventional chemical routes suffering from long preparation duration and multistep. Moreover, the photocatalysts are obtained as nano-powders from conventional chemical routes would introduce another drawback for their recycling and reuse. From an industrial perspective, it is desirable to develop an efficient and facile synthesis process to produce photocatalysts in a non-dispersible form. Herein, we demonstrate that the solution precursor plasma spray (SPPS) process is a single-step method for depositing photocatalytically active zinc ferrite-based films within several minutes. The influence of the precursor ratio on the microstructures and phase compositions of the ZnFe2O4 films was investigated by XRD and Raman analyses. In addition, two optimized ZnFe2O4 films were prepared by increasing the ZnO loading and tailoring injection pattern of the precursor solution. The surface morphologies and optical bandgap were also determined by SEM and UV-visible spectroscopy. The photocatalytic activities of the ZnFe2O4 films were evaluated through the degradation of the Orange II dye and of tetracycline hydrochloride under UV or visible light irradiation. The results show that compositional ratios and composition distribution of the ZnFe2O4 films prepared via SPPS played a key role on the photocatalytic activity. The SPPS route was demonstrated to be a promising method for the synthesis and the deposition of metal oxide (i.e. perovskite type and spinel type) films within a single-step for functional applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...